Problem # 22.1:

(a) In classical mechanics, Newton’s law can be written in the more familiar form \(F = ma \).

The relativistic equation, \(F = dp/dt \), cannot be so simply expressed. Show, rather, that

\[
F = \frac{m}{\sqrt{1 - u^2/c^2}} \left[a + \frac{u(u \cdot a)}{c^2 - u^2} \right],
\]

where \(a = du/dt \) is the ordinary acceleration.

(b) Show that it is possible to outrun a light ray, if you’re given sufficient head start, and your feet generate a constant force.

Problem # 22.2:

Show that the ordinary acceleration of a particle of mass \(m \) and charge \(q \), moving at velocity \(u \) under the influence of electromagnetic fields \(E \) and \(B \), is given by

\[
a = \frac{q}{m} \sqrt{1 - u^2/c^2} \left[E + u \times B - \frac{i}{c^2} u (u \cdot E) \right].
\]

Hint: Use the result of problem #22.1.

Problem # 22.3:

A parallel-plate capacitor, at rest in \(S_0 \) and tilted at a 45° angle to the \(x_0 \) axis, carries
charge densities $\pm \sigma_0$ on the two plates (see figure). System S is moving to the right at speed v relative to S_0.

(a) Find E_0, the field in S_0.
(b) Find E, the field in S.
(c) What angle do the plates make with the x axis?
(d) Is the field perpendicular to the plates in S? Find E_0, the field in S_0.

Problem # 22.4:
In system S_0, a static uniform line charge λ coincides with the z axis.

(a) Write the electric field E_0 in Cartesian coordinates, for the point (x_0, y_0, z_0).
(b) Use the transformation rules for the fields to find the electric field in S, which moves with speed v in the x direction with respect to S_0. The field is still in terms of (x_0, y_0, z_0); express it instead in terms of the coordinates (x, y, z) in S. Finally, write E in terms of the vector \mathbf{S} from the present location of the wire and the angle θ between \mathbf{S} and \hat{x}. Does the field point away from the instantaneous location of the wire, like the field of a uniformly moving point charge?

Problem # 22.5:

(a) Charge q_A is at rest at the origin in system S; charge q_B flies by at speed v on a trajectory parallel to the x axis, but at $y = d$. What is the electromagnetic force on q_B as it crosses the y axis?
(b) Now study the same problem from system \mathcal{S}, which moves to the right with speed v. What is the force on q_B when q_A passes the y axis? Do it two ways:

(i) by using your answer to (a) and transforming the force;
(ii) by computing the fields in \mathcal{S} and using the Lorentz force law.